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This article provides accurate spectral solutions of the driven cavity problem,
calculated in the vorticity–stream function representation without smoothing the
corner singularities—a prima facie impossible task. As in a recent benchmark spectral
calculation by primitive variables of Botella and Peyret, closed-form contributions
of the singular solution for both zero and finite Reynolds numbers are subtracted
from the unknown of the problem tackled here numerically in biharmonic form. The
method employed is based on a split approach to the vorticity and stream function
equations, a Galerkin–Legendre approximation of the problem for the perturbation,
and an evaluation of the nonlinear terms by Gauss–Legendre numerical integration.
Results computed for Re = 0, 100, and 1000 compare well with the benchmark
steady solutions provided by the aforementioned collocation–Chebyshev projection
method. The validity of the proposed singularity subtraction scheme for computing
time-dependent solutions is also established. c© 2002 Elsevier Science (USA)

Key Words: driven cavity problem; corner singularity; vorticity and stream func-
tion formulation; Navier–Stokes equations; Galerkin–Legendre spectral methods;
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1. INTRODUCTION

In a recent paper, Botella and Peyret provided benchmark results for the steady problem in
a square cavity using a pseudospectral Chebyshev approximation to solve the Navier–Stokes
equations by means of a fractional-step projection method [5]. The boundary conditions
considered in that work are exactly as in the earlier FD computations by Burggraf [6]. This
means that the solution has a singular behavior at the two upper corners, where the horizontal
wall slides on the fixed vertical walls of the cavity. To avoid the Gibbs’ phenomenon induced
by the singularities and to improve the accuracy, the unknown variables of the problem where
changed by subtracting solution components associated with the corner singularities, as
provided by the analysis of Batchelor [3] and its extension of Gupta, Manohar and Noble [9].
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The aim of the present paper is to show that results of a comparable accuracy to that
of the spectral projection method can be achieved also using the vorticity–stream function
formulation of the 2D Navier–Stokes equations and a suitable spectral method.

Accounting for the singular component of the solution to the incompressible Navier–
Stokes equations can be troublesome in some discrete form of the singular problem since
the pressure and the vorticity diverge at the two corners, where the leading term of the
singular solution behaves as 1/r , r being the distance from the corner. As a consequence,
any spectral method which samples the pressure or vorticity field at the two singular corners,
as collocation schemes using Gauss–Lobatto points typically do, is unable to solve the
driven cavity problem unless the singularity is eliminated by a suitable regularization of
the velocity boundary conditions, thus leading to an essentially different problem.

In this respect, a somewhat different difficulty, but still related to the use of collocation
points, was faced by Schultz, Lee, and Boyd [18], where the first application of the corner
singularity subtraction technique in a spectral context was proposed. In this case, the tau–
Chebyshev method was used to solve the fourth-order biharmonic equation in a cavity. The
authors reported that the set of algebraic equations so obtained was either an undetermined
system or a slightly overdetermined system. To overcome the indeterminacy, a least-squares
approach was adopted.

The difficulties met by collocation schemes are not faced by the fractional-step method
based on a Poisson equation for pressure considered by Botella and Peyret [5]. In fact, in the
projection method the solution singularity occurs in the pressure field which is governed by a
Neumann boundary value problem, while the velocity field, solution to a Dirichlet problem,
is finite in the corners. Stated in other words, in the projection method the boundary value
of the pressure does not enter the spectral solution algorithm: the collocation points of the
Neumann problem for pressure are all internal to the domain, while the Gauss–Lobatto points
located on the boundary are used to enforce the Dirichlet conditions for the velocity, and do
not involve the pressure variable. For these reasons Botella and Peyret succeeded in solving
the driven cavity problem by subtracting the singular component of the solution within a
spectral-collocation projection method and obtained steady solutions not contaminated by
Gibbs’ spatial oscillations.

In the present paper we show that the same convergence can also be achieved using a
vorticity and stream function formulation by applying the uncoupled spectral solver recently
proposed by the first two authors [1]. The method is based on a Galerkin–Legendre weak
formulation of the linear equations for the nonprimitive variables, operating only on the
Legendre coefficients of the unknowns, and employs standard Gauss–Legendre numerical
integration to evaluate the nonlinear terms. As a consequence, the singular component of
the vorticity is sampled only in the interior of the computational domain while, at the same
time, the trace of the vorticity, with its corner values included, is accommodated within the
solution algorithm, since the vorticity perturbation unknown is a regular function which
assumes finite values on the entire boundary.

2. THE SINGULAR �-� DRIVEN CAVITY PROBLEM

In this section we first define the driven cavity problem in the vorticity and stream function
representation. In Section 2.1 we specify the boundary conditions on the four walls of the
square domain for the singular (not regularized) problem and give a complete discussion of
the compatibility conditions on the boundary data of the biharmonic problem in a square
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domain. In Section 2.2 we recall the expansion of the corner singular solution, including
the first two terms of the series provided by Gupta et al. [9] and also considered by Botella
and Peyret [5]. The focus here is only on the mathematical aspects of the corner singularity;
for a discussion on the limits of the continuum model to represent the physical processes
in the singular region from a molecular dynamics viewpoint the reader is referred to [13].
Finally, in Section 2.3, we describe the behavior of the two components of the singular
solution.

2.1. Singularity and Compatibility Conditions

The Navier–Stokes equations for unsteady 2D flows expressed in terms of the variables
vorticity � and stream function � read

∂�

∂t
+ J (�, � ) = 1

Re
∇2� and −∇2� = �, (2.1)

where J denotes the Jacobian determinant with respect to the x–y coordinates and Re
is the Reynolds number. We consider a unit square domain � = (0, 1)2 with the top wall
sliding toward the left at a unit velocity. The top, bottom, left, and right sides are denoted,
respectively, �t, �b, �l, and �r, as shown in Fig. 1. The boundary conditions for � are
therefore given by

� |� = 0 and




∂�
∂n |�t

= 1,

∂�
∂n |�\�t

= 0.
(2.2)

According to the theoretical analysis of Bernardi and Maday [4], the well-posedness of the
boundary value problem for the biharmonic operator in a rectangular domain requires that
the boundary data satisfy three sets of compatibility conditions at the four corners:

1. Compatibility conditions involving only the values of the Dirichlet datum.
2. Compatibility conditions between the Dirichlet and the Neumann data.
3. Compatibility conditions pertaining only to the Neumann datum.
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FIG. 1. Geometry of the driven cavity problem, with its side denotation and the singular corners.
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The compatibility conditions of the first set are simply that the Dirichlet profiles on the
four sides must be continuous at the four corners [4, p. 167]: these conditions are trivially
satisfied in the driven cavity problem considered above. Notice that the continuity of the
Dirichlet datum at the corners is a compatibility condition also for the elliptic equation
involving the Laplace operator (cf. [4, p. 93]).

The second set of compatibility conditions for the well-posedness of the biharmonic
problem requires that at each corner the tangential derivative of the Dirichlet profile on one
side be coincident with the corner value of the Neumann profile on the other, concurrent side
([4], p. 169). In the boundary conditions of driven cavity problem above, two conditions
among the total of eight such compatibility conditions are not satisfied at the two upper
corners. This is the theoretical reason for the need of a proper treatment of the corner
singularities in the numerical solution of the singular driven cavity problem.

Finally, the last set of compatibility conditions for the biharmonic problem requires that
the tangential derivatives of the two Neumann profiles be equal at each corner (up to the
sign) [4, p. 169, Eq. (2.17)]. These four compatibility conditions are associated with the
equality of the mixed second derivatives of the unknown at the corners and are satisfied by
the Neumann datum of the driven cavity problem.

We notice that Barragy and Carey [2] modified the original Neumann condition for
� on the upper sliding wall by replacing the uniform profile with a trapezoidal profile
vanishing at the singular corners. In this way, all eight compatibility conditions between
the Dirichlet and Neumann data are respected but the third set of compatibility conditions
on the Neumann datum is violated at the singular corners. As a matter of fact, since the
compatibility conditions of the third set are in some sense weaker than those between
the Dirichlet and Neumann data, their violation does not prevent to obtain accurate results
of the steady �-� equations at high Reynolds numbers by means of the p-method on
nonuniform meshes [2]. In any case, the problem solved by these authors approaches the
unregularized driven cavity problem considered in the present work only asymptotically, as
the mesh is infinitely refined.

It must be emphasized that the violation of the compatibility conditions of the second
set occurring in the singular driven cavity problem does not prevent its numerical solution
by a properly constructed spectral approximation. For instance, a Galerkin spectral method
for the vorticity and stream function equations relying on Gauss–Legendre quadrature
points (as opposed to the Gauss–Lobatto ones) has been developed by the present authors
[1]. This scheme has provided correct numerical solutions to the singular driven cavity
problem, without regularization, but for the occurrence of the expected phenomenon of
Gibbs’ oscillations. The spatial oscillations are triggered by the presence of the corner
singularity. The purpose of the present work is to show that the subtraction of the singular
components completely eliminates Gibbs’ spatial oscillations from the Galerkin–Legendre
spectral solution to the vorticity and stream function equations.

2.2. Singular Solution in the Corners

Following the analysis of creeping flow by Batchelor [3], the behavior of the flow in
a corner with one sliding wall and one fixed wall can be determined analytically as an
asymptotic expansion of the solution in the proximity of the corner.

A general expression of the singularity for creeping flows is provided by the well-known
theory of Moffatt, which gives a separated series expansion of powers of the distance
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from the corner with complex exponent. The first few terms of this expansion have been
taken into account by Ingham and Kelmanson in solving the biharmonic problem for
the driven cavity by means of a modified boundary integral method [12] (see also [11,
Chap. 3]).

When the effects of inertia are no longer negligible, further terms have to be taken into
account. In this respect, Gupta et al. determined the solution as an expansion in powers
of the Reynolds number [9], neglecting the contribution due to the eigenfunctions of the
Stokes operator for homogeneous boundary conditions. A more general solution was pro-
vided by Hancock et al., who took into account these additional terms [10]. In the present
work, only the two leading terms of the expansion of the solution to the fourth-order equa-
tion are retained, exactly as in [5], the role of higher order terms being left for further
investigations.

Let A and B denote, respectively, the left and right upper corners of the square cavity
(see Fig. 1). We consider first the singularity of the solution in corner A by introducing a
polar coordinate system (r, �) centered in the corner, so that the fluid is in the region with
−�/2 ≤ � ≤ 0. The first two terms of the expansion for the vorticity are written in the form

�A(r, �; Re) = �A
0 (r, �) + Re �A

1 (r, �), (2.3)

and similarly for the stream function. The boundary conditions accounting for the motion of
the horizontal wall and the rest of the vertical wall are, for the singularity in the left corner,




� A = 0,
∂� A

∂n = 1, for � = 0,

� A = 0,
∂� A

∂n = 0, for � = −�
2 .

(2.4)

The Stokes contribution to the singular solution is obtained considering the biharmonic
problem consisting in the two equations

∇2�A
0 = 0 and ∇2� A

0 = −�A
0 , (2.5)

to be solved in the domain r > 0 and −�/2 < � < 0, under the boundary conditions � A
0 = 0,

(∂� A
0 /∂n) = 1 for � = 0 and � A

0 = 0, (∂� A
0 /∂n) = 0 for � = −�/2.

Then, the first-order-in-Re contribution is obtained by solving the system of two equa-
tions,

∇2�A
1 = J

(
�A

0 , � A
0

)
and ∇2� A

1 = −�A
1 , (2.6)

supplemented by fully homogeneous boundary conditions, namely, � A
1 = 0 and (∂� A

1 /

∂n) = 0 for both � = 0 and � = −�/2 (for details see Gupta, Manohar, and Noble [9]).
The boundary conditions imposed on the singular component(s) account for the incompat-
ibility in the data of the boundary conditions (2.2) of the singular driven cavity problem
and, at the same time, do not introduce the violation of any other compatibility conditions,
as it can be easily checked. For conciseness, we do not report the expressions for �A and
� A, which can be found, e.g., in [5].
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2.3. Components of the Singular Solution

As anticipated, the steady solution of the corner singularity considered in the present work
comprises two analytical components: the first one associated with the Stokes problem and
the second one proportional to the Reynolds number, associated with the solution of the
same Stokes operator but with a given source term. The expressions of the vorticity field
and the stream function of the singular solution are

{
�A+B(r, �; Re) = �A+B

0 (r, �) + Re �A+B
1 (r, �),

� A+B(r, �; Re) = � A+B
0 (r, �) + Re � A+B

1 (r, �).

To clarify the effect of including either only the Stokes component or both components,
we show in Figs. 2 and 3 the plots of the vorticity fields and the streamlines, respectively.
In each figure the behavior of the two separate contributions as well as their sum for
the representative value of Reynolds number Re = 100 are displayed, for comparison. As

0 1
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0 1
0

1

0 1
0

1

FIG. 2. Vorticity levels of the singular components of the driven cavity problem. (Top left) Zeroth-order
contribution �A+B

0 ; (top right) first-order-in-Re contribution �A+B
1 ; (bottom) superposition of the contributions

�A+B
0 + Re �A+B

1 for Re = 100.
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FIG. 3. Streamlines of the singular components of the driven cavity problem. (Top left) Zeroth-order con-
tribution � A+B

0 ; (top right) first-order-in-Re contribution � A+B
1 ; (bottom) superposition of the contributions

� A+B
0 + Re � A+B

1 for Re = 100.

expected, the singularity of the Stokes component is much stronger than that associated with
the first-order-in-Re component. The latter breaks the symmetry with respect to the midline
x = 1

2 .

3. THE �′-� ′ PERTURBATION PROBLEM

We now formulate the problem with the singularities subtracted by specifying the equa-
tions governing the perturbation unknowns �′ and � ′ defined by the relations

{
�(x, t) = �′(x, t) + �A+B(x) = �′(x, t) + �A(x) + �B(x),

�(x, t) = � ′(x, t) + � A+B(x) = � ′(x, t) + � A(x) + �B(x).
(3.1)

The precise form of the perturbed problem is stated in Section 3.1 and the boundary con-
ditions for �′ are derived in Section 3.2. Then, we describe the algorithm for the time
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discretization of the equations governing the variables �′ and �′ in Section 3.3. Finally, we
outline the Galerkin–Legendre spectral method employed for the spatial approximation in
Section 3.4.

3.1. Governing Equations

Substituting (3.1) into the �-� equations (2.1) gives for the following system for the
perturbation unknowns �′ and � ′:




Re
∂�′

∂t
+ ReJ (�′ + �A+B, �′ + �A+B) = ∇2(�′ + �A+B),

−∇2�′ = �′.
(3.2)

We note that no singular solution component appears in the Poisson equation since the fields
�A and �A are such that −∇2�A = �A identically, and similarly for �B and �B . Eventually,
we can write the vorticity equation in the form

Re
∂�′

∂t
− ∇2�′ = ∇2�A+B − ReJ (�′ + �A+B, �′ + �A+B), (3.3)

where we retain on the left hand side only the terms to be treated implicitly in the time-
stepping algorithm that will be introduced below.

3.2. Boundary Conditions

The stream function �′ must satisfy boundary conditions which are derived from the
boundary conditions (2.2) originally attached to � and from the values assumed on �

by the singular solutions �A and �B introduced in Section 2.2. The Dirichlet condition
is �′

|� = −(�A + �B)|� . Taking into account the boundary values imposed on �A by the
conditions (2.4) and their counterpart for �B , it is immediate to obtain the Dirichlet condition
for �′ on each of the four sides:

�′
|�t

= 0,

�′
|�l

= −�B
|�l

, �′
|�r

= −�A |�r , (3.4)

�′
|�b

= −(�A + �B)|�b .

The Neumann condition for �′ on each side is obtained by the same argument:

∂�′

∂n |�t

= −1,

∂�′

∂n |�l

= −∂�B

∂n |�l

,
∂�′

∂n |�r

= −∂�A

∂n |�r

, (3.5)

∂�′

∂n |�b

= −∂(�A + �B)

∂n |�b

.

In terms of the Cartesian components of velocity, (u A, vA) and (uB, vB), these Neumann
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conditions for �′ read

∂�′

∂n |�t

= −1,

∂�′

∂n |�l

= −vB
|�l

,
∂�′

∂n |�r

= +vA
|�r

, (3.6)

∂�′

∂n |�b

= (u A + uB)|�b .

Since the singular component �A+B has accounted for the original incompatibility of the
boundary data at the two corners without introducing any further incompatibility, the bound-
ary conditions for the perturbation unknown �′ satisfy all of the compatibility conditions
for the biharmonic problem stated by Bernardi and Maday [4], as described in Section 2.1.

3.3. Time Discretization

For simplicity, the discretization in time of the vorticity equation is performed by means
of a first-order-accurate time stepping, with an implicit account of the viscous term and a
fully explicit treatment of the nonlinear Jacobian term. If the fields at t = tn are indicated
by �′

old and � ′
old, while the unknowns at t = tn+1 are indicated simply by �′ and �′, the time

discretized problem is

(−∇2 + � )�′ = f and −∇2�′ = �′, (3.7)

where � = Re/�t and

f = ��′
old + ∇2�A+B − Re J (�′

old + �A+B, �′
old + �A+B). (3.8)

The biharmonic problem above is solved after recasting it in the uncoupled form [16]

(−∇2 + � )�′ = f,
∫

�

��′ =
∮

∂�

(
∂�

∂n
a′ −�b′

)
;

(3.9)
−∇2�′ = �′, �′

|∂� = a′.

In the integral conditions above, � represents any function harmonic in the computational
domain �, while a′ and b′ denote, respectively, the Dirichlet and Neumann boundary data
for � ′ appearing, respectively, in (3.4) and (3.6).

3.4. Spatial Approximation

The spatial discretization of the two elliptic equations in (3.7) is achieved by means of the
Galerkin–Legendre method of Shen [17], with polynomials of the same degree N in the
two spatial directions (see also [1]). The integral conditions are satisfied according to
the spectral counterpart of the classical Glowinski–Pironneau method described in [1].
The nonlinear term is calculated by means of a numerical quadrature based on the standard
Gauss–Legendre integration rule [1].

In the algorithm without singularity subtraction, an exact evaluation of the quadratic
nonlinear term by numerical integration is obtained by a Gauss–Legendre formula with
3
2 (N + 1) quadrature points. The inclusion of the singular terms, which are not integrated
exactly by the Gauss formula, entails aliasing errors. In order to appraise these errors, a
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TABLE I

Convergence of �(0, 0.95) for Different Degrees of the Basis

and a Different Number of Quadrature Points (Re = 100)

N (N + 1) 3
2
(N + 1) 2(N + 1)

16 −36.569 −36.194 −36.178
24 −35.973 −36.043 −36.045
32 −36.115 −36.088 −36.088
48 −36.082 −36.078 −36.078
64 −36.076 −36.077 −36.077
96 −36.076 −36.076 −36.076

comparison of the accuracy of the algorithm with a different number of quadrature points has
been carried out, as reported in Table I. It can be seen that while a quite remarkable difference
exists between results obtained with N + 1 and 3

2 (N + 1) points for N low, increasing the
number of quadrature points to 2(N + 1) does not significantly improve the accuracy. This
observation led us to retain the standard 3

2 (N + 1) Gauss–Legendre quadrature rule.
A better convergence rate might be achieved by analytically integrating the singular terms

or by introducing ad hoc quadrature schemes for such terms. However, this would introduce
an unwanted complication in the algorithm since the tensor product structure would be lost
in the treatment of these terms.

A fundamental aspect in computing the right hand side (3.8) is the evaluation of the
singular component (�A+B, �A+B) at the Gauss–Legendre points without transforming it
in the basis function space, that is, without computing the expansion coefficients in the
assumed polynomial basis. This consideration applies to both the term ∇2�A+B and the
nonlinear term. The former is, however, the most critical one since it involves the second-
order derivatives and has to be treated with particular care. After it is expressed in a weak
variational form through an integration by parts, the resulting inner product (∇w, ∇�A+B),
evaluated from the point values of ∇�A+B by means of the Gauss–Legendre numerical
quadrature, is necessarily inaccurate due to the singular behavior of �A+B .

In order to avoid explicit use of ∇2�A+B and of its weak substitutive equivalent, Eqs. (2.5)
and (2.6) satisfied by the first and second terms of the singularity can be exploited. Noting
that �A+B

0 = �A
0 + �B

0 and �A+B
1 = �A

1 + �B
1 , Eqs. (2.5) and (2.6) imply, respectively,

∇2�A+B
0 = 0, (3.10)

∇2�A+B
1 = J

(
�A

0 , �A
0

) + J
(
�B

0 , �B
0

)
. (3.11)

As a consequence, the right hand side (3.8) is expressed in the form

f = ��′
old − Re

{
J
(
�′

old + �A+B
1 , �′

old + �A+B
)

(3.12)

+ J
(
�A

0 , �′
old + �B

0 + �A+B
1

) + J
(
�B

0 , �′
old + �A

0 + �A+B
1

)}
,

with the singular contributions appearing only in the “nonlinear” terms.
Since the evaluation of the terms of (3.12) is less critical—no second derivative is

involved—a direct approach may be adopted: point values of the gradient ∇�A+B =
(−vA+B, u A+B) are computed by means of the analytical expressions of the singular



THE SINGULAR DRIVEN CAVITY PROBLEM 607

solution given in [5], while point values of ∇�A+B are computed according to the expres-
sions which follow. Putting �A(r, �; Re) = �A

0 (r, �) + Re �A
1 (�), with �A

0 (r, �) = �A
0 (�)/r ,

the fields ∇�A
0 and ∇�A

1 of the Stokes and the first-order-in-Re contributions due to the
singularity of corner A are

�
∂�A

0

∂x
(r, �) = − 1

r2
[2 sin(2�) + � cos(2�)], �2 ∂�A

1

∂x
(r, �) = − sin �

r
(�),

�
∂�A

0

∂y
(r, �) = 1

r2
[2 cos(2�) − � sin(2�)], �2 ∂�A

1

∂y
(r, �) = cos �

r
(�),

(3.13)

where we have introduced the function

(�) = 4[−A1 + (2B1 − 3C2 + 4B2�)cos(2�) + (2C1 + 3B2 + 4C2�)sin(2�)]. (3.14)

For the expression of A1, B1, B2, C1, and C2 the reader is referred to [5]. By symmetry
considerations, the expressions for ∇�B

0 and ∇�B
1 of the two contributions due to the

singularity of corner B are obtained in the form

∂�B
0

∂x
(r, �) = −∂�A

0

∂x
(r, � − �),

∂�B
1

∂x
(r, �) = −∂�A

1

∂x
(r, � − �),

∂�B
0

∂y
(r, �) = ∂�A

0

∂y
(r, � − �),

∂�B
1

∂y
(r, �) = ∂�A

1

∂y
(r, � − �).

(3.15)

This treatment of the singular contributions allows to fully exploit the accuracy of the
proposed method.

4. NUMERICAL SOLUTIONS AND COMPARISONS

In this section we compare some results obtained using the method described in [1], which
has no treatment for the singularity, with the results provided by the present method in which
the singular component of the flow is accounted for analytically and separately from the
regular one. The main purpose is to demonstrate that a spectral method can provide accurate
results for the singular driven cavity problem even employing the vorticity and stream
function equations. Some “punctual” comparisons of the present solutions with benchmark
values will be given without pretending, however, to offer new reference values. Accurate
benchmark data are in fact already available in recent works of Barragy and Carey, who
employed a p-type finite element method [2], and of Botella and Peyret, who employed
a collocation–Chebyshev projection method [5]. Older but not less accurate benchmark
results were given by Olson and Tuann [14].

We compare also the spectral results obtained by subtracting only the zeroth-order term
with those obtained by subtracting the complete singularity comprising both the zeroth-
order and first-order-in-Re contributions. The numerical solutions are presented mainly for
the vorticity field, since it is the flow variable with the lowest regularity. Note that no filter
has been applied, neither to obtain the displayed data nor to produce the plots.

First numerical comparisons for the steady flow are provided in Section 4.1; then solutions
of the time-dependent singular driven cavity problem are presented in Section 4.2.
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FIG. 4. Vorticity levels of the Stokes solution without (left) and with (right) subtraction of the corner singularity
for N = 50.

4.1. Comparisons of Steady Solutions

Let us start by comparing the spectral solution provided by the original method [1]
not containing any treatment for the singularity, with the solution obtained by the method
that subtracts the singular components associated with the two upper corners. In Fig. 4
the two vorticity solutions for 50 × 50 polynomials are given. Strong Gibbs’ oscillations
are present in the solution of the first method, localized mainly on and near the vertical
walls. By contrast the method with singularity subtraction yields a very smooth vorticity
field everywhere in the cavity. The smoothness of the solutions obtained by the present
spectral method is also illustrated by Fig. 5, which contains numerical solutions to the
Stokes problem corresponding to 102 and 1002 Legendre modes.

The accuracy of the �-� spectral solution to the Stokes flow is verified by comparing the
values of � at the local extrema in the primary and secondary vortices with the benchmark
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FIG. 5. Vorticity levels of the Stokes solution with subtraction of the corner singularity using N = 10 (left)
and N = 100 (right).
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TABLE II

Solution to the Stokes Problem

N u-p [5] �-� present

� at primary vortex 12 0.10007 630 0.10007 62580
16 0.10007 627 0.10007 62657
24 0.10007 627 0.10007 62656
48 0.10007 627 0.10007 62656
96 0.10007 62656

� at secondary vortex 12 −2.1657 × 10−6 −2.12970 684 × 10−6

16 −2.2255 × 10−6 −2.23269 186 × 10−6

24 −2.2279 × 10−6 −2.22771 733 × 10−6

48 −2.2276 × 10−6 −2.22757 111 × 10−6

96 −2.22757 114 × 10−6

�(0, 0.95) 12 −27.27894 −27.27858 705
16 −27.27898 −27.27896 477
24 −27.27903 −27.27903 216
48 −27.27901 −27.27900 888
96 −27.27900 971

results provided by the spectral projection method of Botella and Peyret, reported in Table II.
With the same number of modes, the values � of the present method and those computed
from the u-p solution are of a comparable accuracy. The solution with about 100 polynomials
in each direction gives values with up to 10 exact significant digits. The values of vorticity
in the point (0, 0.95), near to the top right corner, are also compared in Table II and the
present spectral method is again found to be as accurate as the projection scheme.

We now consider nonzero Reynolds numbers. In Fig. 6, the steady spectral solution
for Re = 100 calculated with a spatial resolution of 302 modes without any singularity
subtraction is compared with the two solutions obtained by subtracting only the Stokes
singular component and by subtracting both the Stokes and the inertial singular components.
These two latter vorticity fields compare well with the benchmark solution provided in [5],
the complete singularity treatment producing a smoother solution. In the plottings, the
improvement provided by including the inertial component in the singularity subtraction
appears to be marginal with respect to the gain achieved by subtracting only the Stokes
singular component. A more significant comparison is, however, possible by inspecting
point values of the vorticity and comparing them to the benchmark values [5] given in
Table III. Here we see that the subtraction of the full singularity leads to an appreciably
faster convergence than the removal of only the Stokes component, especially near the
singular corners.

In Fig. 7 the steady-state solutions for the higher value Re = 1000 provided by the method
with singularity treatment are compared for a spatial approximation using 1002 degrees of
freedom. Gibbs’ oscillations affect the vorticity field computed without the singularity sub-
traction, without however destroying the qualitative meaning of the results. The solution pro-
vided by the singularity corrected method is remarkably much more accurate. The accuracy
is assessed by comparing our results with the benchmark solution given in [5]. In Table IV
the vorticity value at the point (0, 0.95) is reported for different values of N . The comparison
with the reference results is excellent. The same conclusions can be drawn from Tables V and
VI, where the vorticity point values on the horizontal and vertical centerlines are reported.



TABLE III

Solution for Re = 100

�-� present, �-� present0,
N u-p [5] full singularity Stokes singularity

�(0, 0.95) 24 −35.88211 −36.04297 509 −35.96656 957
32 −36.13314 −36.08831 142 −36.08366 102
48 −36.08094 −36.07841 854 −36.00327 582
64 −36.07343 −36.07657 815 −35.99108 960
96 −36.07535 −36.07621 984 −36.06454 716

�(0.5, 0.5) 24 1.17437 5 1.17484 481 1.17510 994
32 1.17441 0 1.17454 933 1.17460 211
48 1.17441 2 1.17443 524 1.17443 577
64 1.17441 2 1.17441 837 1.17441 625
96 1.17441 2 1.17441 316 1.17441 213

�(0.5, 1) 24 6.56746 3 6.56256 181 6.57120 043
32 6.56478 4 6.56390 601 6.56680 472
48 6.56416 1 6.56412 805 6.56496 515
64 6.56410 7 6.56412 084 6.56448 320
96 6.56409 1 6.56410 387 6.56420 977
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610



THE SINGULAR DRIVEN CAVITY PROBLEM 611

TABLE IV

Solution for Re = 1000

N u-p [5] �-� present, full singularity

�(0, 0.95) 48 −84.24558 −83.99790
64 −83.47874 −83.80990
96 −83.70878 −83.80291

128 −83.88577 −83.82139
160 −83.82351 −83.82184

TABLE V

Solution for Re = 1000, �(0.5, y)

y 322 642 1282 1602 1602 [5]

0.0000 −4.16657 −4.16651 −4.16649 −4.16649 −4.16648
0.0547 −2.44035 −2.44934 −2.44963 −2.44959 −2.44960
0.0625 −2.31193 −2.31768 −2.31787 −2.31786 −2.31786
0.0703 −2.20460 −2.20221 −2.20173 −2.20176 −2.20175
0.1016 −1.62867 −1.63462 −1.63436 −1.63437 −1.63436
0.1719 1.06128 1.05470 1.05464 1.05467 1.05467
0.2813 2.26942 2.26730 2.26774 2.26771 2.26772
0.4531 2.07067 2.06238 2.06216 2.06215 2.06215
0.5000 2.05827 2.06751 2.06724 2.06722 2.06722
0.6172 2.06797 2.06496 2.06543 2.06540 2.06539
0.7344 2.09625 2.09145 2.09124 2.09120 2.09121
0.8516 1.76898 1.76220 1.76204 1.76201 1.76200
0.9531 4.44763 4.86093 4.85743 4.85757 4.85754
0.9609 6.51359 6.95836 6.95974 6.95970 6.95968
0.9688 9.36122 9.48878 9.49513 9.49496 9.49496
0.9766 12.60600 12.06556 12.06722 12.06693 12.0670
1.0000 14.32910 14.75547 14.75381 14.75361 14.7534

TABLE VI

Solution for Re = 1000, �(x, 0.5)

x 322 642 1282 1602 1602 [5]

0.0000 −5.59602 −5.47227 −5.46258 −5.46226 −5.46217
0.0312 −8.41640 −8.44494 −8.44340 −8.44349 −8.44350
0.0391 −8.22466 −8.24544 −8.24611 −8.24614 −8.24616
0.0469 −7.58278 −7.58509 −7.58528 −7.58522 −7.58524
0.0547 −6.51158 −6.50946 −6.50871 −6.50866 −6.50867
0.0937 0.91697 0.92320 0.92287 0.92290 0.92291
0.1406 3.42823 3.43005 3.43013 3.43015 3.43016
0.1953 2.21912 2.21172 2.21169 2.21172 2.21171
0.5000 2.05827 2.06751 2.06724 2.06722 2.06722
0.7656 2.05351 2.06169 2.06119 2.06121 2.06122
0.7734 1.98639 2.00231 2.00177 2.00175 2.00174
0.8437 0.73193 0.74280 0.74204 0.74206 0.74207
0.9062 −0.79667 −0.82320 −0.82403 −0.82399 −0.82398
0.9219 −1.25534 −1.24106 −1.23994 −1.23990 −1.23991
0.9297 −1.49816 −1.50299 −1.50306 −1.50308 −1.50306
0.9375 −1.77974 −1.83182 −1.83303 −1.83309 −1.83308
1.0000 −7.60270 −7.66347 −7.66389 −7.66385 −7.66369
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FIG. 7. Vorticity levels of the steady solutions for Re = 1000 and N = 100. Comparison of spectral solutions
without singularity treatment (left) and with subtraction of the singular solution (right).

4.2. Comparisons of Unsteady Solutions

Let us consider the evolutionary problem of the driven cavity with an impulsive start
of the wall and the fluid initially at rest in the whole domain. The initial condition for the
perturbation problem is readily deduced from the condition of zero vorticity, �(x, 0) = 0,
recast for the vorticity perturbation unknown �′ = � − �A+B , to give

�′(x, 0) = −�A+B(x).

Thus the first time step is computed with �′
old = −�A+B(x), evaluated in weak form by

a L2 projection performed numerically, relying upon Gauss–Legendre quadrature points;
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FIG. 8. Instantaneous vorticity field for the impulsively started driven cavity problem at t = 6.25 for Re = 1000
and with N = 100. (Left) No treatment for the corner singularity; (right) subtraction of the solution singular
component.
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FIG. 9. Instantaneous streamlines for the impulsively started driven cavity problem at t = 6.25 for Re = 1000
and with N = 100. (Left) No treatment for the corner singularity; (right) subtraction of the solution singular
component.

the nonlinear term of (3.3) is initially zero, and Eq. (3.12) for t = 0 reduces to f|t=0 =
−��A+B + ReJ (�A

0 , �A
0 ) + ReJ (�B

0 , �B
0 ).

The adequacy of the subtraction technique also for computing time-dependent solutions
has been assessed considering Re = 1000. In Figs. 8 and 9 we compare, respectively, the
vorticity field and the streamlines of two spectral solutions with 1002 degrees of freedom,
at time t = 6.25. The solution on the left is obtained with no singularity treatment, while
the solution on the right is provided by the spectral method with subtraction of the corner
singularity. The vorticity field of the first method is polluted by Gibbs’ phenomenon, with
strong oscillations localized near the vertical walls. It must be noted that, irrespective of
these appreciable spatial oscillations, the vorticity field in the interior of the cavity is almost
indistinguishable from that obtained by a FEM formulation solving the equations for the
stream function and the vorticity with a fully explicit treatment of the viscous term in the
dynamical equation [8]. The vorticity levels of the spectral method with a proper handling
of the corner singularity are smooth. The comparison between the streamlines provided by
the two methods shown in Fig. 9 confirms that the Gibbs’ polluted spectral solution still
reproduces the dynamics of detailed features of the flow, in this case the coalescence of
two vortices along the downstream vertical wall to form a single secondary eddy in the
downstream bottom corner of the cavity at later stages of the transient.

5. CONCLUSIONS

A spectral technique for the accurate solution of the singular driven cavity problem in the
vorticity and stream function representation has been proposed. The method implements
the singularity subtraction technique proposed by Botella and Peyret [5] for the primi-
tive variable projection method and is based on the Galerkin–Legendre spectral solver for
the vorticity and stream function equations presented in [1]. The equations are solved in
an uncoupled manner by imposing vorticity integral conditions by means of the spectral
counterpart of the Glowinski–Pironneau method implemented in [1].
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The numerical results presented in the paper demonstrate that the singular problem can be
solved accurately, even using the nonprimitive variables, without smoothing the boundary
conditions in the singular corners. As in [5], both the Stokes and the first-order-in-Re
components of the singular solution have been considered. The inclusion of these two
components is found to guarantee greater accuracy than when including only the Stokes
singular component in the considered Reynolds number interval (Re ≤ 1000).

In developing the algorithm, the evaluation of the various terms involving the singular
component of the solution has required a very careful treatment. For instance, it has been
found that a straightforward handling of the linear and nonlinear explicit terms in the
vorticity equation can lead to a degradation of the accuracy of the method. In particular,
the singular components of vorticity and stream function must be retained in the physical
space, while the regular component is handled in the space of the Legendre coefficients. In
this connection, it can be noted that the accuracy of the singularity subtraction technique
might be enhanced by resorting to a conformal mapping of the local coordinates of each
singular region of the problem, as recently proposed by Pathria and Karniadakis for Laplace,
Poisson, and Helmholtz equations [15]. The viability of this approach to the Stokes operator
in the presence of nonlinear terms and under more than one singularity is certainly a matter
worthy of investigation.

The most distinctive characteristic of the proposed method lies in the adoption of a modal,
hierarchical basis instead of the classical Lagrangian basis. This basis allows complete
freedom in the choice of the numerical integration rule, which is not the case of collocation-
oriented bases, implying necessarily the use of a Gauss–Lobatto quadrature formula to
enforce Dirichlet boundary conditions. As a consequence, the classical Gauss–Legendre
quadrature formula is here employed, which does not require a sampling of the singularity
in the upper corners, in contrast to the Gauss–Lobatto formula. To accurately evaluate the
integrals involving the singular component(s) of the solution it is sufficient to adopt the
standard 3

2 (N + 1) rule, also needed for the exact computation of the quadratic nonlinear
terms.

The results obtained for steady solutions are found to be in a perfect agreement with, and
also more accurate than, the benchmark spectral results of [5]. Moreover, the singularity
subtraction technique adopted here, although based on singular solutions of the steady
problem, is found to be adequate for obtaining accurate spectral solutions also for the
unsteady version of the singular driven cavity problem.
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